Fatigue crack detection performance comparison in a composite wind turbine rotor blade

Author:

Taylor Stuart G12,Park Gyuhae23,Farinholt Kevin M4,Todd Michael D1

Affiliation:

1. Department of Structural Engineering, University of California San Diego, La Jolla, CA, USA

2. Engineering Institute, Los Alamos National Laboratory, Los Alamos, NM, USA

3. School of Mechanical Systems Engineering, Chonnam National University, Gwangju, South Korea

4. Commonwealth Center for Advanced Manufacturing, Disputanta, VA, USA

Abstract

This article presents the detection performance results for multiple detectors or test statistics, using different active-sensing hardware systems in identifying the presence and location of a through-thickness fatigue crack in a 9-m composite wind turbine rotor blade. The rotor blade underwent ~8.5 million cycles of fatigue loading until failure, when a 30-cm-long crack surfaced on the leading edge portion of the blade’s transitional root area. The rotor blade was cantilevered on a 7-ton test stand and excited using a hydraulically actuated resonant excitation system, which drove the rotor blade at its first natural frequency. Through the course of the test, data were collected using two distinct types of acquisition hardware: one designed for ultrasonic-guided wave interrogation and the other for diffuse wave field interrogation. This article presents the fatigue crack detection performance results for several hardware and test statistic combinations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DDDAS for Systems Analytics in Applied Mechanics;Lecture Notes in Computer Science;2024

2. Opportunistic maintenance optimisation for offshore wind farm with considering random wind speed;International Journal of Production Research;2023-05-03

3. AE health monitoring technique for composite wind turbine blade: a state-of-art review;Acoustic Emission Signal Analysis and Damage Mode Identification of Composite Wind Turbine Blades;2023

4. Recent advances in damage detection of wind turbine blades: A state-of-the-art review;Renewable and Sustainable Energy Reviews;2022-10

5. Multi-level damage diagnosis on stiffened composite panels based on a damage-uninformative digital twin;Structural Health Monitoring;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3