A comparative study of two indirect methods to monitor surface integrity of ground components

Author:

Hübner Henrique Butzlaff1ORCID,da Silva Rosemar Batista1,Duarte Marcus Antônio Viana1,da Silva Marcio Bacci1,Ferreira Fabio Isaac2,de Aguiar Paulo Roberto2,Baptista Fabrício Guimarães2ORCID

Affiliation:

1. School of Mechanical Engineering, Federal University of Uberlândia, Uberlândia, Brazil

2. Department of Electrical Engineering, School of Engineering, São Paulo State University, Bauru, Brazil

Abstract

One of the major challenges in grinding is to conciliate the material removal rate with components free from damages. Due to the poor thermal conductivity of conventional grinding wheels, most of the heat generated during grinding is transferred to the workpiece surface and subsurface, which can cause thermal damages and impair the performance in service of machined components. Hence, it is very important to monitor the grinding process to ensure the quality of the machined parts. Thus, this work presents an innovative study comparing two indirect monitoring methods in monitoring surface integrity of steel during grinding: the acoustic emission technique and the electromechanical impedance technique. Worktable speed and radial depth of cut were used as input parameters. Visual inspection and scanning electron microscopy images of ground surfaces as well as microhardness were the output variables used to assess surface integrity and to establish a relationship with the acoustic emission and electromechanical impedance techniques. Since the acoustic emission signals are non-stationary in nature, these signals were analyzed in the time–frequency domain by applying the short-time Fourier transform and the continuous wavelet transform. The root mean square deviation index was extracted as feature from the acoustic emission and electromechanical impedance signals. Results showed that both techniques presented similar results. The root mean square deviation index showed a good correlation with alterations in surface integrity under the conditions investigated.

Funder

coordenação de aperfeiçoamento de pessoal de nível superior

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3