Immunity of the second harmonic shear horizontal waves to adhesive nonlinearity for breathing crack detection

Author:

Wen Fuzhen12,Shan Shengbo12,Cheng Li12ORCID

Affiliation:

1. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

2. The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China

Abstract

High-order harmonic guided waves are sensitive to micro-scale damage in thin-walled structures, thus, conducive to its early detection. In typical autonomous structural health monitoring (SHM) systems activated by surface-bonded piezoelectric wafer transducers, adhesive nonlinearity (AN) is a non-negligible adverse nonlinear source that can overwhelm the damage-induced nonlinear signals and jeopardize the diagnosis if not adequately mitigated. This paper first establishes that the second harmonic shear horizontal (second SH) waves are immune to AN while exhibiting strong sensitivity to cracks in a plate. Capitalizing on this feature, the feasibility of using second SH waves for crack detection is investigated. Finite element (FE) simulations are conducted to shed light on the physical mechanism governing the second SH wave generation and their interaction with the contact acoustic nonlinearity (CAN). Theoretical and numerical results are validated by experiments in which the level of the AN is tactically adjusted. Results show that the commonly used second harmonic S0 (second S0) mode Lamb waves are prone to AN variation. By contrast, the second SH0 waves show high robustness to the same degree of AN changes while preserving a reasonable sensitivity to breathing cracks, demonstrating their superiority for SHM applications.

Funder

Innovation and Technology Commission of the HKSAR Government

National Natural Science Foundations of China through SHENG

Research Grants Council of Hong Kong Special Administrative Region

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3