Vibro-acoustic modulation–based damage identification in a composite skin–stiffener structure

Author:

Ooijevaar Ted12,Rogge Matthew D3,Loendersloot Richard2,Warnet Laurent1,Akkerman Remko1,Tinga Tiedo2

Affiliation:

1. Production Technology, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands

2. Dynamics Based Maintenance, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands

3. Nondestructive Evaluation Sciences Branch, NASA Langley Research Center, Hampton, VA, USA

Abstract

Vibro-acoustic modulation–based damage identification relies on the modulation of a high-frequency carrier signal by an intenser low-frequency vibration signal due to damage-induced structural nonlinearities. A time domain analysis of the vibro-acoustic modulation phenomena was presented at multiple spatial locations in an impact damaged composite skin–stiffener structure. The instantaneous amplitude and frequency of the carrier velocity response were extracted to analyze the intermodulation effects between the two excitation signals. Increased amplitude modulations at the damaged region revealed the presence, location, and length of the skin–stiffener damage. The damage hardly modulated the frequency of the carrier response. This difference in behavior was attributed to the nonlinear skin–stiffener interaction introduced by the periodic opening and closing of the damage, according to earlier research by authors on the same structure. A parametric study showed that the amplitude and phase of the amplitude modulation are dependent on the selected carrier excitation frequency, and hence the high-frequency wave field that is introduced. This work demonstrates not only the potential but also the complexity of the vibro-acoustic modulation based damage identification approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3