Automatic quality detection system for structural objects using dynamic output method: Case study Vilnius bridges

Author:

Bucinskas Vytautas1,Dzedzickis Andrius1,Sesok Nikolaj1,Iljin Igor1,Sutinys Ernestas1,Sumanas Marius1,Morkvenaite-Vilkonciene Inga1ORCID

Affiliation:

1. Department of Mechatronics, Robotics, and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, Vilnius, Lithuania

Abstract

Paper provides an attempt to create a methodology for automated structure health monitoring procedures using vibration spectrum analysis. There is an option to use autoregressive (AR) spectral analysis to extract information from frequency spectra when conventional Fast Fourier transformation (FFT) analysis cannot give relevant information. An autoregressive spectrum analysis is widely used in optics and medicine; however, it can be applied for different purposes, such as spectra analysis in electronics or mechanical vibration. This paper presents an automated structural health monitoring approach based on the algorithm-driven definition of the first resonant frequency value from a noisy signal, acquired from traffic-created bridge vibrations. We implemented the AR procedure and developed a peak detection algorithm for experimental data processing. The functionality of the proposed methodology was evaluated by performing research on six bridges in Vilnius (Lithuania). We compared three methods of data processing: FFT, filtered FFT and AR. Bridges vibrations under different excitation conditions (wind, impulse and traffic) in normal direction were measured using accelerometers. AR provided one peak representing the lowest resonant frequency in all cases, while FFT and filtered FFT provided up to 12 peaks with similar frequency values. Such results allow implementing our method for remote automated structures health monitoring and ensure structures safety using a convenient and straightforward diagnostic method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3