A rolling bearing fault diagnosis method based on a convolutional neural network with frequency attention mechanism

Author:

Zhou Hui1,Liu Runda2,Li Yaxin2,Wang Jiacheng2,Xie Suchao2ORCID

Affiliation:

1. Central South University of Forestry and Technology, Changsha, Hunan, China

2. Central South University, Changsha, Hunan, China

Abstract

A convolutional neural network fault diagnosis method based on frequency attention mechanism was designed for the problem that the traditional method cannot adaptively extract effective feature information in rolling bearing fault diagnosis and the diagnosis effect of rolling bearing is poor under strong environmental noise interference. Firs, the Mel-frequency cepstral coefficient (MFCC) of the bearing vibration signal was extracted. Second, to solve the problem of the channel attention mechanism adopting global average pooling (GAP) and neglecting channel internal characteristic information, the GAP was extended in the frequency domain, and a two-stage frequency component selection criterion was designed. The results show that the MFCC method can extract fault-sensitive features in industrial noise environments, improve the existing channel attention mechanism using frequency domain attention mechanism, and overcome the information loss caused by GAP of convolutional layer features in channel attention mechanism. Identification accuracy, recall rate, and F1-score are 100% on the rolling bearing simulation fault datasets of Case Western Reserve University and Central South University. Compared with the convolutional block attention module, the accuracy of the method combining spatial attention mechanism and channel attention mechanism is improved by 0.34 and 0.24%, respectively, and compared with other front-bearing fault diagnosis methods, it also offers significant improvement.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3