Leakage aperture identification of natural gas pipeline based on compressed acquisition and DSAE

Author:

Sun Jiedi12ORCID,Liu Zhao1,Wen Jiangtao3,Qiao Yanlei1

Affiliation:

1. School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei Province, PR China

2. Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, PR China

3. Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, PR China

Abstract

Traditional gas pipeline leak detection methods usually face challenges in that there are redundant data collected on account of the time-domain sampling theory and the valuable leakage information is hidden in the complex vibration signals. This paper put forward an intelligent aperture identification method for natural gas pipeline leakage. This method integrated the compression of monitoring data based on compressed sensing (CS) transformation and automatic feature extraction and identification based on deep neural networks, namely, denoising sparse autoencoder (DSAE). The compressed acquisition can greatly reduce the volume to be processed and effectively extract the aperture information. DSAE combined the merits of sparse auto-encoder (SAE), denoising coding and dropout to achieve robust feature extraction and aperture classification. Experimental results validate the effectiveness and good performance, and the proposed method can realize faster and more accurate identification of different leak sizes compared with the traditional methods.

Funder

Hebei Key Laboratory Project

natural science foundation of hebei province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3