A Bayesian machine learning approach for online detection of railway wheel defects using track-side monitoring

Author:

Ni Yi-Qing1ORCID,Zhang Qiu-Hu1

Affiliation:

1. Hong Kong Branch of Chinese National Engineering Research Center on Rail Transit Electrification and Automation, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

Abstract

Wheel condition assessment is of great significance to ensure the operation safety of trains and metro systems. This study is intended to develop a Bayesian probabilistic method for online and quantitative assessment of railway wheel conditions using track-side strain-monitoring data. The proposed method is a fully data-driven, nonparametric approach without the need of a physical model. To enable defect identification using only response measurement, the measured dynamic strain responses of rail tracks during the passage of trains are processed to elicit the normalized cumulative distribution function values representative of the effect of individual wheels, which in conjunction with the frequency points are used to formulate a probabilistic reference model in terms of sparse Bayesian learning. Through cleverly realizing sparsity by introducing hyper-parameters and their priors, the sparse Bayesian learning makes the resulting model to exempt from overfitting and generalize well on unseen data. Only the monitoring data in healthy state are needed in formulating the reference model. A novel Bayesian null hypothesis significance testing in terms of scale-invariant intrinsic Bayes factor, which does not suffer from the Jeffreys–Lindley paradox, is then pursued in the presence of new monitoring data collected from possibly defective wheel(s) to detect wheel defects and quantitatively assess wheel condition. The proposed method in fully Bayesian inference framework is verified by utilizing the real-world monitoring data acquired by a distributed fiber Bragg grating–based track-side monitoring system and comparing with the offline inspection results.

Funder

Research Grants Council, University Grants Committee

Innovation and Technology Commission

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3