Automatic pixel-level detection method for concrete crack with channel-spatial attention convolution neural network

Author:

Li Yuanyuan1,Yu Meng1,Wu Decheng1,Li Rui1,Xu Kefei1,Cheng Longqi1

Affiliation:

1. School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China

Abstract

Concrete crack detection is a significant research problem in structural safety. However, the traditional manual inspection is a laborious and time-consuming method, and the detection accuracy is greatly limited by the work experience of engineers. Hence, automatic image-based crack detection has attracted wide attention from both academia and industry. In this study, a novel crack detection method using attention convolution neural networks, ATCrack, is proposed for automatic crack identification. ATCrack uses a symmetric structure consisting of an encoder and a decoder by imposing channel-spatial attention to achieve end-to-end crack prediction. Channel attention module is introduced in the encoder to improve the effective utilization of crack features, and spatial attention is added in the decoder to suppress the background features. Combining with channel and spatial attention modules, the codec network will be more sensitive to the characteristics of cracks and increase detection accuracy and robustness. Moreover, a complex crack dataset of buildings and pavements is collected to verify the effectiveness and feasibility of ATCrack. Finally, experiment results are tested on several public datasets and self-collected (CBCrack) database, and it shows that the proposed method during the five-fold cross-validation can achieve state-of-the-art performance compared with other existing methods in terms of precision, recall, F1-score, and mIoU.

Funder

the Chongqing Special Key Project for Technological Innovation and Application Development

the Science and Technology Research Project of Chongqing Education Commission

the Cooperation Project between Universities in Chongqing and Institutes affiliated with the Chinese Academy of Sciences

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3