Advancing measurement of zero-group-velocity Lamb waves using PVDF-TrFE transducers: first data and application to in situ health monitoring of multilayer bonded structures

Author:

Liu Qijian1,Li Yehai2ORCID,Guan Ruiqi3,Yan Jiajia1,Liu Menglong4,Luo Guojie5,Su Zhongqing5ORCID,Qing Xinlin1,Wang Kai16ORCID

Affiliation:

1. School of Aerospace Engineering, Xiamen University, Xiamen, PR China

2. Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China

3. College of Civil Engineering, Huaqiao University, Xiamen, PR China

4. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, PR China

5. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

6. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, PR China

Abstract

Driven by the rapid advancement in manufacturing technologies, engineering structures with complex geometries are increasingly applied in various industries, posing challenges to the applicability and adaptability of existing structural health monitoring methods based on guided ultrasonic waves. To fulfill the characterization of defects in complex structures, a novel approach featuring a conjunction of zero-group-velocity (ZGV) Lamb waves and polarized poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) transducers is proposed. In this approach, the PVDF-TrFE solvent is deposited and in situ polarized on the structure surface to form thin and flexible coatings, with which the ZGV waves can be excited efficiently and measured reliably. On this basis, the defect can be characterized by investigating the defect-induced alteration in ZGV wave features. In experimental validations, disbond defects in multilayer bonded structures are evaluated using the ZGV waves measured with fabricated PVDF-TrFE transducers. For the first time, the ZGV waves are measured in a contact and in situ manner. Compared with conventional noncontact measurement of ZGV waves, the proposed approach features a remarkably improved reliability, convenience for narrowband excitation, immunity to measurement uncertainty and capability of in situ monitoring. The proposed approach can advance the ZGV wave-based methods toward the in situ health monitoring and enable the defect evaluation in emerging complex structures.

Funder

Shenzhen Stable Support Grant

National Natural Science Foundation of China

Hong Kong Research Grants Council via General Research Funds

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3