Deep Bayesian neural networks for damage quantification in miter gates of navigation locks

Author:

Hoskere Vedhus1ORCID,Eick Brian12,Spencer Billie F1,Smith Matthew D3,Foltz Stuart D2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, IL, USA

2. Construction Engineering Research Laboratory, Engineer Research and Development Center, US Army Corps of Engineers, Champaign, IL, USA

3. Coastal and Hydraulics Laboratory, Engineer Research and Development Center, US Army Corps of Engineers, Vicksburg, MS, USA

Abstract

Inland navigation infrastructure like locks and dams form a vital part of the global economy. Locks facilitate the transport of hundreds of millions of dollars’ worth of goods on a daily basis. A primary cause for downtime of locks in the United States is damage to lock gates. Current inspection methods involve the complete closure of locks to visually inspect for damage. A common target of such inspections is the identification of “gaps” that form along the bearing surface boundary of miter gates. These gaps accelerate the fatigue failure of the gate by disrupting the designed load distribution mechanism. This article presents a novel engineering application of structural health monitoring for full-scale civil infrastructure with a method to automatically quantify the damage quantity of interest, that is, the gaps using measured strain data. We propose a framework for damage estimation of full-scale civil infrastructure in general and miter gates in particular, leveraging recent advances in deep Bayesian learning. A new two-term loss function is produced to increase the accuracy of the trained networks and the model uncertainties are conveyed using Monte Carlo dropout. In addition, we propose a strategy to model bearing surface gaps using non-linear contact analyses and use the proposed model to determine the sensitivity of measured strains to damage. The proposed framework is implemented for the miter gates at the Greenup locks and dam. Finally, the proposed methodology is validated using measured data. Slopes measured from the lock gate are used as the input to the trained networks to estimate the gap depths. The finite element model is updated using the estimated gap depths. The predicted slopes and strains from the updated model are shown to match the measured strains and slopes well. The results demonstrate the efficacy of the approach for damage detection in full-scale civil infrastructure.

Funder

Engineer Research and Development Center

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3