A method for detection of delamination depth position within composite laminates based on 2D continuous wavelet transform and CNN

Author:

Huang Mingxuan1,Xu Zhonghai1ORCID,Hu Chunxing1,Qiu Jiezheng1,Yin Weilong1,Wang Rongguo1,He Xiaodong1

Affiliation:

1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, P.R. China

Abstract

This paper proposes a laminate mode shape curvature (MSC) analysis method combining 2D continuous wavelet transform (2D-CWT) and convolutional neural network (CNN) technologies to address the delamination damage detection in composite laminated plates. This method constructs a new network model based on the emerging CNN technology and achieves good results by detecting delamination damage through learning the MSC images processed by 2D-CWT. The train in this study is constructed by inserting randomly generated delamination with varying geometric sizes, depth positions, and geometric positions into a specified 16-layer carbon fiber-reinforced plastic finite-element model. In addition, the method of establishing the finite-element model has been verified by experiments, the error of the simulation frequency is less than 10%, and the mode shape is consistent. The results show that the proposed method can effectively detect the depth position of the delamination with a detection accuracy of 93.89% ± 2.74% using the comprehensive dataset. Compared with the Resnet-50 backbone network, the proposed network improves detection performance by 0.86%. This finding expands the range of tasks that can be accomplished by mode shape detection methods and has broad prospects for subsequent engineering applications.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

National Key Research and Development Program of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3