Quantitatively linking long-term monitoring data to condition ratings through a reliability-based framework

Author:

Flanigan Katherine A1,Lynch Jerome P1ORCID,Ettouney Mohammed2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA

2. Mohammed Ettouney LLC, West New York, NJ, USA

Abstract

The holy grail of structural health monitoring is the quantitative linkage between data and decisions. While structural health monitoring has shown continued growth over the past several decades, there is a persistent chasm between structural health monitoring and the ability of structure owners to make asset management decisions based on structural health monitoring data. This is in part due to the historical structural health monitoring paradigm cast as a problem of estimating structural state and detecting damage by monitoring changes in structural properties (namely, reduced stiffness). For most operational structures, deterioration does not necessarily correspond to changes in structural properties with structures operating in their elastic regimes even when deteriorated. For structures like bridges, upkeep decisions are based on federally mandated condition ratings assigned during visual inspection. Since condition ratings are widely accepted in practice, the authors propose that condition ratings serve as lower limit states (i.e. limit states below yielding) with long-term monitoring data used to quantify these lower limit states in terms of the reliability index. This article presents a method to quantify the reliability index values corresponding to the lower limit states described by existing condition ratings. Once the reliability index thresholds are established, the data-driven reliability index of the in-service asset can be monitored continuously and explicitly mapped to a condition rating at any time. As an illustrative example, the proposed framework for tracking structural performance is implemented with long-term monitoring data collected on a pin-and-hanger assembly on the Telegraph Road Bridge, which is a highway bridge located in Monroe, MI. The successful implementation of the proposed method on the Telegraph Road Bridge results in a human-independent and truly data-driven decision-making strategy that is synergistic with the state of practice, eliminates risks associated with infrequent visual inspections, and expands condition ratings to encompass the entire measurable domain of damage that may exist in an asset.

Funder

National Science Foundation

Michigan Department of Transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3