Noncontact nondestructive ultrasonic techniques for manufacturing defects monitoring in composites: a review

Author:

Mortada Hanadi1,El Mousharrafie Sarah1,Mahfoud Elie1ORCID,Harb Mohammad1

Affiliation:

1. Smart Structures and Structural Integrity Laboratory, Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon

Abstract

Composite materials are widely used in most industries due to their high specific strength, specific stiffness, and their relatively lighter weight compared to other traditional materials. However, the presence of defects arising from manufacturing processes or during service loads can make these structures more susceptible to a diminished performance. Furthermore, the former defects are inevitable in composite structures, but they can be reduced. Each type of defect requires specific inspection techniques and configurations. In this work, a review of the different types of composites manufacturing processes and their corresponding resultant defects is presented with the various nondestructive evaluation techniques employed for these defects’ characterization. The emphasis of this paper is on ultrasonic inspection and detection techniques for they present high sensitivity to surface/subsurface discontinuities, superior depth of ultrasonic penetration for flaw detection, feasibility on large scales, and instantaneous and detailed images production. Notably, noncontact ultrasonic testing techniques are also reviewed, air-coupled techniques in specific, and highlighted as a fine alternative to conventional contact inspection systems as they reduce the restrictions that coexist with the use of couplants. Moreover, these ultrasonic testing techniques are summarized to show the latest research progress achieved in the field of air-coupled ultrasonic inspection systems for manufacturing defects’ monitoring in composite structures including delamination, porosity, dryness, waviness, and resin lack/excess. Finally, we highlight the type and central frequency of the transducers and experimental results present in literature and obtained in terms of both detection and size of the defects.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3