Multi-objective SHM sensor path optimisation for damage detection in large composite stiffened panels

Author:

Morse Llewellyn1ORCID,Giannakeas Ilias N2ORCID,Mallardo Vincenzo3,Sharif-Khodaei Zahra2ORCID,Aliabadi MH2

Affiliation:

1. Department of Mechanical Engineering, University College London, London, UK

2. Department of Aeronautics, Imperial College London, London, UK

3. Department of Architecture, University of Ferrara, Ferrara, Italy

Abstract

This work proposes a novel methodology for the automatic multi-objective optimisation of sensor paths in structural health monitoring (SHM) sensor networks using archived multi-objective simulated annealing. Using all of the sensor paths within a sensor network may not always be beneficial during damage detection. Many sensor paths may experience significant signal noise, attenuation, and wave mode conversion due to the presence of features, such as stiffeners, and hence impair the detection accuracy of the overall system. Many paths will also contribute little to the overall coverage level or damage detection accuracy of the network and can be ignored, reducing complexity. Knowing which paths to include, and which to exclude, can require significant prior expert knowledge, which may not always be available. Furthermore, even when expert knowledge is considered, the optimum path selection might not be achieved. Therefore, this work proposes a novel automatic procedure for optimising the sensor paths of an SHM sensor network to maximise coverage level, maximise damage detection accuracy and minimise the overall signal noise in the network due to geometric features. This procedure was tested on a real-world large composite stiffened panel with many geometric features in the form of frames and stiffeners. Compared to using all of the available sensor pairs, the optimised network exhibits superior performance in terms of detection accuracy and overall noise. It was also found to provide very similar performance, in terms of coverage level and overall signal noise, to a sensor path network designed based on prior expert knowledge but provided up to 35% higher damage detection accuracy. As a result, the novel procedure proposed in this work has the capability to design high-performing SHM sensor path networks for structures with complex geometries but without the need for prior expert knowledge, making SHM more accessible to the engineering community.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3