Weakly supervised crack segmentation using crack attention networks on concrete structures

Author:

Mishra Anoop1ORCID,Gangisetti Gopinath1,Eftekhar Azam Yashar2,Khazanchi Deepak1ORCID

Affiliation:

1. University of Nebraska Omaha, Omaha, NE, USA

2. University of New Hampshire, Durham, NE, USA

Abstract

Crack detection or segmentation on concrete structures is a vital process in structural health monitoring (SHM). Though supervised machine learning techniques have gained tremendous success in this domain, data collection and annotation continue to be challenging. Image data collection is challenging, tedious, and laborious, including accessing representative datasets and manually labeling training data in the SHM domain. According to the literature, there are significant issues with the hand-annotation of image data. To address this gap, this paper proposes a two-stage weakly supervised learning framework utilizing a novel “crack attention network (CrANET)” with attention mechanism to detect and segment cracks on images with no human annotations in pixel-level labels. This framework classifies concrete surface images into crack or no-cracks and then uses gradient class activation mapping visualization to generate crack segmentation. Professionals and domain experts subsequently evaluate these segmentation results via a human expert validation study. As the literature suggests that weakly supervised learning is a limited practice in SHM, this research title will motivate researchers in SHM to research and develop a weakly supervised learning approach processing as state of the art.

Funder

NSF MIDWEST: Smart Big Data Pipeline for Aging Rural Bridge Transportation Infrastructure

Publisher

SAGE Publications

Reference54 articles.

1. US department of transportation: building a better America fact sheet for rural communities, 2022, https://tinyurl.com/66z9w842.

2. Evaluating the effects of the I-35W bridge collapse on road-users in the twin cities metropolitan region

3. Computer vision-based concrete crack detection using U-net fully convolutional networks

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3