Damage localization under ambient excitations and non-stationary vibration signals by a new hybrid algorithm for feature extraction and multivariate distance correlation methods

Author:

Entezami Alireza1,Shariatmadar Hashem1

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Ambient excitations applied to structures may lead to non-stationary vibration responses. In such circumstances, it may be difficult or improper to extract meaningful and significant damage features through methods that mainly rely on the stationarity of data. This article proposes a new hybrid algorithm for feature extraction as a combination of a new adaptive signal decomposition method called improved complete ensemble empirical mode decomposition with adaptive noise and autoregressive moving average model. The major contribution of this algorithm is to address the important issue of feature extraction under ambient vibration and non-stationary signals. The improved complete ensemble empirical mode decomposition with adaptive noise method is an improvement on the well-known ensemble empirical mode decomposition technique by removing redundant intrinsic mode functions. In addition, a novel automatic approach is presented to select the most relevant intrinsic mode functions to damage based on the intrinsic mode function energy level. Fitting an autoregressive moving average model to each selected intrinsic mode function, the model residuals are extracted as the damage-sensitive features. The main limitation is that such features are high-dimensional multivariate time series data, which may make a difficult and time-consuming decision-making process for damage localization. Multivariate distance correlation methods are introduced to cope with this drawback and locate structural damage using the multivariate residual sets of the normal and damaged conditions. The accuracy and robustness of the proposed methods are validated by a numerical shear-building model and an experimental benchmark structure. The effects of sampling frequency and time duration are evaluated as well. Results demonstrate the effectiveness and capability of the proposed methods to extract sufficient and reliable features, identify damage location, and quantify damage severity under ambient excitations and non-stationary signals.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3