Detection and quantification of diameter reduction due to corrosion in reinforcing steel bars

Author:

Amjad Umar1,Yadav Susheel Kumar1,Kundu Tribikram1

Affiliation:

1. Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, AZ, USA

Abstract

Guided wave–based techniques are becoming popular for damage detection in pipes, rods, and plates. For monitoring reinforced concrete beams, the longitudinal guided wave is excited and recorded after its transmission through the reinforcing steel bar for estimating its corrosion level. Recorded signal amplitude is affected by the corrosion level. Thus, the corrosion level is estimated from the transmitted wave amplitude. Instead of investigating the amplitude of the transmitted guided waves, the differential time-of-flight of the propagating wave modes is recorded in this article. The differential time-of-flight is obtained from the time–frequency representations of the recorded transient signals and from the high temporal resolution using the cross-correlation technique. It is observed that the corrosion level can be quantified from the change in time-of-flight of the L(0,1) mode. The guided wave modes are experimentally generated, recorded, and compared with the theoretical dispersion curves to identify different modes and select the most efficient mode for quantifying the corrosion level. Unlike the recorded signal strength, the time-of-flight is not influenced by the bonding condition between the sensors and the specimen; therefore, the time-of-flight-based corrosion-monitoring technique is less influenced by the sensor bonding condition. This investigation is necessary because most investigators have studied the effect of corrosion on the recorded signal strength instead of its time-of-flight.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3