Combination forecast model for concrete dam displacement considering residual correction

Author:

Wei Bowen1,Yuan Dongyang1,Li Huokun1,Xu Zhenkai1

Affiliation:

1. School of Civil Engineering and Architecture, Nanchang University, Nanchang, China

Abstract

In conventional dam displacement monitoring models, forecast precision is below the standard, the fitting residual sequence contains chaotic components, and information mining of dam prototype observation data is limited. In consideration of the chaotic characteristics of the fitting residual sequence in regression model, the multi-scale wavelet analysis is used to decompose and reconstruct the residual sequence in this study; back propagation neural network and autoregressive integrated moving average model are used to forecast the reconstructed residual sequence by identifying the high-frequency and low-frequency characteristics of signals. By superimposing the residual forecast value with the forecast value of regression model, the combination forecast model for concrete dam displacement considering residual correction is proposed. Examples show that, compared with conventional models, the proposed combination model is better in fitting precision and convergence speed. Forecast capability is significantly improved for dam displacement forecast when effective components contained in residual sequence are considered. A new method of displacement forecast for high slope and other hydraulic structures is presented.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3