Health monitoring of sandwich composites with auxetic core subjected to indentation tests using acoustic emission

Author:

Essassi Khawla12ORCID,Rebiere Jean-Luc1,Mahi Abderrahim EL1,Amine Ben souf Mohamed2,Bouguecha Anas2,Haddar Mohamed2

Affiliation:

1. Acoustics Laboratory of Mans University (LAUM) UMR CNRS 6613, Le Mans University, Le Mans, France

2. Laboratory of Mechanics Modeling and Production (LA2MP), National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia

Abstract

The quasi-static indentation behavior of an eco-sandwich composite with auxetic core consisting of polylactic acid reinforced with flax fibers will be discussed in this article. The structures involved in the test were manufactured using 3D printing technique. Four configurations with different number of cells in the core, were tested. It is found that sandwiches with high number of cells are stiffer and dissipate more energy. Experimental tests were monitored with acoustic emission technique in order to detect the appearance and the evolution of damage behavior. An unsupervised pattern recognition algorithm was used to post process the acoustic emission signals. The classification is conducted using k-means algorithm. Results show that there are three different classes of events for each configuration, which are the core cracking, the matrix cracking and the fiber/matrix debonding. The evaluation of the contribution of each damage mechanism on the total amount of failure was deduced according to the amplitude range, the cumulative number of hits and the acoustic energy activity. Furthermore, macroscopic and microscopic observations were performed in order to correlate acoustic emission classes with the damage mechanisms observed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3