A novel adaptive fault diagnosis algorithm for multi-machine equipment: application in bearing and diesel engine

Author:

Liu Yangshuo1ORCID,Kang Jianshe1,Bai Yunjie2,Guo Chiming1

Affiliation:

1. Army Engineering University of PLA, Shijiazhuang, China

2. 66029 Unit of the Chinese People’s Liberation Army, Xilinguolemeng, China

Abstract

This paper proposes an adaptive fault diagnosis algorithm based on vibration signals for fault diagnosis of bearings and diesel engines. First, the improved nonlinear gray wolf optimization algorithm (NGWO) is adopted to optimize the key parameter for variational mode decomposition (VMD) with the power spectral entropy as the fitness value. Meanwhile, adaptive noise reduction of the signal is realized. Then, sensitive fault features of bearings and diesel engines are selected through a feature sensitivity analysis on the vibration signals. Also, a single-layer sparse autoencoder is used to align the feature dimensions of each type of data to construct feature matrix samples. Subsequently, a deep neural network (DNN) consisting of a two-layer stacked sparse autoencoder (SSAE) and a Softmax classification layer is constructed to realize failure mode recognition. During the training process of DNN, a surrogate model formed by NGWO and a back propagation neural network is employed to optimize the hyperparameters of SSAE. Finally, to verify the effectiveness of the proposed fault diagnosis algorithm, fault diagnosis experiments are conducted on the fault data set of bearings and diesel engines. The diagnosis results show that the proposed method achieves high-precision fault diagnosis for bearings and diesel engines and performs stably for small samples.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3