An adaptable rotated bounding box method for automatic detection of arbitrary-oriented cracks

Author:

An Yonghui1,Kong Lingxue1ORCID,Hou Chuanchuan2ORCID,Ou Jinping1

Affiliation:

1. Department of Civil Engineering, Dalian University of Technology, Dalian, P. R. China

2. School of Transportation Science and Engineering, Beihang University, Beijing, P. R. China

Abstract

Concrete crack detection is a crucial task for the safety and durability of engineering structures. Extensive research has been conducted on deep-learning methods employing horizontal bounding boxes (HBBs) for crack detection. However, due to the inherently random distribution of concrete cracks, HBB-based methods often produce excessive overlaps and encompass extensive background regions, obstructing the effective interpretation and adaptation of the detection results. To address this issue and achieve efficient utilization of bounding box space for detecting cracks at any orientation, a rotated bounding box (RBB)-based method, that is, Rotated Faster R-CNN with a post processing strategy (RFR-P), was proposed. To realize this method, an RBB-based crack annotation strategy was introduced to standardize the annotation baseline for the evolutionarily established RBB-based crack detection dataset. Then, an RBB-based post-processing strategy was inventively developed to quantify the patterns of cracks with their corresponding rotation angles encompassing longitudinal cracks, transverse cracks, and diagonal cracks. Subsequently, experimental results showed that the RFR-P method provides more reasonable and elaborate detection results in terms of crack distribution patterns when compared to HBB-based methods. Based on the comprehensive consideration of evaluation metrics and detected results, it can be concluded that the RFR-P is aptly designed for detecting cracks at any rotation angle with relatively high accuracy. Finally, an RBB-based concrete crack detection platform was established to automatically detect in situ concrete bridge cracks for real-world applications. The proposed RFR-P model introduces a new perspective on crack detection methods and offers practical references for structural condition evaluation.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3