Radar-based structural health monitoring of wind turbine blades: The case of damage detection

Author:

Moll Jochen1,Arnold Philip1,Mälzer Moritz1,Krozer Viktor1,Pozdniakov Dimitry2,Salman Rahmi2,Rediske Stephan3,Scholz Markus3,Friedmann Herbert3,Nuber Andreas3

Affiliation:

1. Department of Physics, Goethe University Frankfurt, Frankfurt am Main, Germany

2. HF Systems Engineering GmbH & Co. KG, Kassel, Germany

3. Wölfel Engineering GmbH + Co. KG, Höchberg, Germany

Abstract

Structural health monitoring of wind turbine blades is challenging due to its large dimensions, as well as the complex and heterogeneous material system. In this article, we will introduce a radically new structural health monitoring approach that uses permanently installed radar sensors in the microwave and millimetre-wave frequency range for remote and in-service inspection of wind turbine blades. The radar sensor is placed at the tower of the wind turbine and irradiates the electromagnetic waves in the direction of the rotating blades. Experimental results for damage detection of complex structures will be presented in a laboratory environment for the case of a 10-mm-thick glass-fibre-reinforced plastic plate, as well as a real blade-tip sample.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward chipless RFID sensor for metal surface cracks detection;Sensor Review;2024-08-13

2. Non-Contact Full-Field Bearing Condition Monitoring and Fault Diagnosis Using Millimeter-Wave Radar;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

3. Wind Turbine Blade Erosion Detection using Visual Inspection and Transfer Learning;2024 International Conference on Control, Automation and Diagnosis (ICCAD);2024-05-15

4. Analysis of Dynamic RCS of Floating Wind Turbine by Sea State;The Journal of Korean Institute of Information Technology;2024-03-31

5. Review on the Advancements in Wind Turbine Blade Inspection: Integrating Drone and Deep Learning Technologies for Enhanced Defect Detection;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3