A Bridge-Vehicle Interaction Based Experimental Investigation of Damage Evolution

Author:

Pakrashi Vikram1,O'Connor Alan2,Basu Biswajit3

Affiliation:

1. Roughan & O'Donovan Consulting Engineers, Sandyford, Dublin, Ireland

2. Department of Civil, Structural, and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland,

3. Department of Civil, Structural, and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland

Abstract

This article presents an experimental monitoring of the evolution of a crack in a beam using beam-vehicle interaction response signals for identification of progressively increasing crack-depth ratios. The beam is traversed by a two-axle model vehicle providing excitation in the time domain for the various extents of damage. The response of the beam in the time domain during the period of forced vibration is measured using strain gages. A consistent evolution of damage has been demonstrated in terms of the maxima values of the measured responses. The corresponding distortions of wavelet coefficients of the measured strain data due to the presence of various levels of damage have been identified. The evolution of the phase space and the wavelet transformed phase spaces have been evaluated with damage evolution. The wavelet transformed phase spaces for the undamaged and the damaged cases are observed to be distinctly different at high scales. The importance of denoising of the acquired data and the importance of vehicle configuration has been illustrated. This study presents a basis for a general model free damage assessment and structural health monitoring framework. The study presented is particularly useful in the context of continuous online bridge health monitoring, since the data necessary for analysis can be obtained from the operating condition of the bridge and the structure does not need be closed down.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3