Damage imaging in skin-stringer composite aircraft panel by ultrasonic-guided waves using deep learning with convolutional neural network

Author:

Cui Ranting1,Azuara Guillermo2ORCID,Lanza di Scalea Francesco1ORCID,Barrera Eduardo2ORCID

Affiliation:

1. Experimental Mechanics, NDE & SHM Laboratory, Department of Structural Engineering, University of California San Diego, La Jolla, CA, USA

2. Instrumentation and Applied Acoustics Research Group, Universidad Politécnica de Madrid, Madrid, Spain

Abstract

The detection and localization of structural damage in a stiffened skin-to-stringer composite panel typical of modern aircraft construction can be addressed by ultrasonic-guided wave transducer arrays. However, the geometrical and material complexities of this part make it quite difficult to utilize physics-based concepts of wave scattering. A data-driven deep learning (DL) approach based on the convolutional neural network (CNN) is used instead for this application. The DL technique automatically selects the most sensitive wave features based on the learned training data. In addition, the generalization abilities of the network allow for detection of damage that can be different from the training scenarios. This article describes a specific 1D-CNN algorithm that has been designed for this application, and it demonstrates its ability to image damage in key regions of the stiffened composite test panel, particularly the skin region, the stringer’s flange region, and the stringer’s cap region. Covering the stringer’s regions from guided wave transducers located solely on the skin is a particularly attractive feature of the proposed SHM approach for this kind of complex structure.

Funder

Federal Aviation Administration

Federal Railroad Administration

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3