Structural monitoring of a strengthened orthotropic steel bridge deck using strain data

Author:

Teixeira de Freitas Sofia1,Kolstein Henk1,Bijlaard Frans1

Affiliation:

1. Structural and Building Engineering, Delft University of Technology, Delft, The Netherlands

Abstract

Orthotropic steel bridges have experienced early fatigue cracks at several welded connections in the steel deck plate. One of the possible strengthening systems to enlarge the fatigue life of the existing decks consists of bonding a second steel plate to the existing deck. This renovation technique was for the first time applied on the orthotropic deck of the movable bridge Scharsterrijn. This article describes the results of the structural monitoring carried out to evaluate the short-term and long-term performance of the strengthening system. Static and dynamic controlled load tests were carried out using a calibrated truck. Strain history measurements were recorded continuously during 1 year from the normal traffic running on the bridge. The short-term measurements show significant decrease of the stress level at the bridge deck after the renovation, especially at the deck plate details. The stresses at the welds between the deck plate and the stiffener web reduce approximately 55% at the deck plate side and 35% at the stiffener web side. Due to this reduction, the fatigue life of these welds is expected to increase 11 times at the deck plate side and 3.6 times at the stiffener side. The long-term measurements do not show significant changes in the stress level at the bridge deck during the year of monitoring. The strengthening system has demonstrated good performance reliability to prolong the life span of the movable orthotropic bridges.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference22 articles.

1. Lessons from Weld Cracks in Orthotropic Decks on Three European Bridges

2. Fatigue cracks in longitudinal ribs of steel orthotropic deck

3. Jong FBP. Renovation techniques for fatigue cracked orthotropic steel bridge decks. PhD Dissertation. Delft University of Technology, Netherlands, 2006.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3