Nonlinear ultrasonic detection for evaluating fatigue crack in metal plate

Author:

Wang Rong1,Wu Qi12ORCID,Yu Fengming2,Okabe Yoji2,Xiong Ke1

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Abstract

In engineering structures, metal materials always endure fatigue cracks under long-term service. There has been a demand for developing a structural health monitoring method to evaluate micro-sized fatigue cracks, as cracking is considered as a precursor to structural failure. However, conventional linear-ultrasound-based technology is not sensitive to crack when it is barely visible in a metal medium. In this article, we present a nonlinear ultrasonic technology based on crack–wave interaction to investigate the growth of a fatigue crack. A breathing-crack model with a plastic zone around it was precisely established to reveal the change in the Lamb wave. The relative nonlinear parameter calculated from the fundamental and harmonic components of the Lamb wave showed linearly increasing with the growth of the fatigue crack. The relative nonlinearity was related to ultrasonic parameters, such as the cycle number and the excited frequency of the tone-burst signal. In addition, it was also related to the angle between the sensor and the crack rather than their distance. A set of experiments were conducted, demonstrating that the increasing trend of ultrasonic nonlinearity fits very well to the finite element analysis results. In conclusion, the nonlinear ultrasonic method that can be applied to the detection of micro fatigue cracks in metal plates is an effective structural health monitoring technique.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3