Affiliation:
1. Division of Structural Engineering, Göteborg, Chalmers University of Technology, SE, Sweden
2. Thomas Concrete Group AB, Göteborg, Sweden
3. NCC Sverige AB, Sweden
Abstract
The implementation of structural health monitoring (SHM) systems in existing civil engineering structures could contribute to a safer and more resilient infrastructure as well as important savings. Due to their light weight, small size, and high resistance to the environment, distributed optical fibre sensors (DOFS) stand out as a very promising technology for damage detection and quantification in reinforced concrete (RC) structures. In this paper, the performance of DOFS featuring an external polymeric cladding with rough surface, to accurately assess deflection and crack width of a stainless-steel RC beam subjected to four-point bending is investigated. Several sensor positions, both embedded in the concrete and attached to the surface, are investigated in a multi-layer configuration. The study revealed that embedded sensors yield very accurate results regardless of the sensor position and the load level, that is, service or ultimate loads, being the sensor glued in a premade groove on the steel bar the most reliable solution for high-load levels. Conversely, externally deployed sensors for the assessment of existing structures, described attenuated values for the measured deflections, and, to some extent also the crack width, due to a loss of bond between the sensor and the surrounding concrete, already for service loads. Corrective methods to further use the obtained data are presented, yet the clad DOFS attached to the concrete surface described a significant drop of performance with increasing load levels, showing an important loss of data at 80% of the ultimate load.
Subject
Mechanical Engineering,Biophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献