Physically meaningful uncertainty quantification in probabilistic wind turbine power curve models as a damage-sensitive feature

Author:

Mclean Jacques H1ORCID,Jones Matthew R1,O’Connell Brandon J1,Maguire Eoghan2ORCID,Rogers Tim J1

Affiliation:

1. Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK

2. Vattenfall Research and Development, Edinburgh, UK

Abstract

A wind turbines’ power curve is an easily accessible form of damage-sensitive data, and as such is a key part of structural health monitoring (SHM) in wind turbines. Power curve models can be constructed in a number of ways, but the authors argue that probabilistic methods carry inherent benefits in this use case, such as uncertainty quantification and allowing uncertainty propagation analysis. Many probabilistic power curve models have a key limitation in that they are not physically meaningful – they return mean and uncertainty predictions outside of what is physically possible (the maximum and minimum power outputs of the wind turbine). This paper investigates the use of two bounded Gaussian processes (GPs) in order to produce physically meaningful probabilistic power curve models. The first model investigated was a warped heteroscedastic Gaussian process, and was found to be ineffective due to specific shortcomings of the GP in relation to the warping function. The second model – an approximated GP with a Beta likelihood was highly successful and demonstrated that a working bounded probabilistic model results in better predictive uncertainty than a corresponding unbounded one without meaningful loss in predictive accuracy. Such a bounded model thus offers increased accuracy for performance monitoring and increased operator confidence in the model due to guaranteed physical plausibility.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Reliability in Wind Turbine Power Curve Estimation;Applied Sciences;2024-03-15

2. A spectrum of physics-informed Gaussian processes for regression in engineering;Data-Centric Engineering;2024

3. Gaussian Processes;Computational Methods in Engineering & the Sciences;2023

4. Towards Physics-Based Metrics for Transfer Learning in Dynamics;Data Science in Engineering, Volume 10;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3