Feasibility study on integrated structural health monitoring system produced by metal three-dimensional printing

Author:

Strantza Maria1,De Baere Dieter2,Rombouts Marleen3,Maes Gert3,Guillaume Patrick2,Van Hemelrijck Danny1

Affiliation:

1. Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel, Brussels, Belgium

2. Department of Mechanical Engineering, Vrije Universiteit Brussel, Brussels, Belgium

3. Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium

Abstract

Numerous structural health monitoring systems have been investigated extensively in order to enhance safety level and reduce direct operational costs. This work demonstrates the feasibility study of a new concept, the effective structural health monitoring system. The effective structural health monitoring system detects cracks using a system of capillaries incorporated into a structure. The structure with the integrated capillaries is produced by additive manufacturing, a process of adding material layer by layer. The first objective of this study is to prove that the developed system has reached technological readiness level 3. In order to prove that, four-point bending specimens with the integrated effective structural health monitoring system were tested after being produced by additive manufacturing, more specifically by laser metal deposition. The second objective of the study is to indicate that during four-point bending fatigue tests, the integrated structural health monitoring system has no influence on the crack initiation behavior. To do so, the specimens were subjected to the so-called step method. We demonstrate that the effective structural health monitoring has reached technological readiness level 3 and that the presence of effective structural health monitoring did not negatively influence the fatigue initiation process. As higher technology readiness levels are required, further investigations are still in progress.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3