An enhanced dynamic Gaussian mixture model–based damage monitoring method of aircraft structures under environmental and operational conditions

Author:

Qiu Lei1,Fang Fang1,Yuan Shenfang1,Boller Christian2,Ren Yuanqiang1

Affiliation:

1. Research Center of Structural Health Monitoring and Prognosis, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China

2. Non-Destructive Testing and Quality Assurance, Saarland University, Saarbrücken, Germany

Abstract

Gaussian mixture model–based structural health monitoring methods have been studied in recent years to improve the reliability of damage monitoring under environmental and operational conditions. However, most of these methods only use the ordinary expectation maximization algorithm to construct the Gaussian mixture model but the expectation maximization algorithm can easily lead to a local optimal solution and a singular solution, which also results in unreliable and unstable damage monitoring especially for complex structures. This article proposes an enhanced dynamic Gaussian mixture model–based damage monitoring method. First, an enhanced Gaussian mixture model constructing algorithm based on a Gaussian mixture model merge-split operation and a singularity inhibition mechanism is developed to keep the stability of the Gaussian mixture model and to obtain a unique optimal solution. Then, a probability similarity–based damage detection index is proposed to realize a normalized and general damage detection. The method combined with guided wave structural health monitoring technique is validated by the hole-edge cracks monitoring of an aluminum plate and a real aircraft wing spar. The results indicate that the method is efficient to improve the reliability and the stability of damage detection under fatigue load and varying structural boundary conditions. The method is simple and reliable regarding aviation application. It is a data-driven statistical method which is model-independent and less experience-dependent. It can be used by combining with different kinds of structural health monitoring techniques.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3