Locating material defects via wavefield demixing with morphologically germane dictionaries

Author:

Druce Jeff1,Gonella Stefano1,Kadkhodaie Mojtaba2,Jain Swayambhoo2,Haupt Jarvis D2

Affiliation:

1. Department of Civil, Environmental, and Geo - Engineering, University of Minnesota, Minneapolis, MN, USA

2. Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA

Abstract

This article introduces a methodology for the detection and localization of structural defects in solid media using morphological demixing algorithms. The demixing algorithms are designed to separate spatiotemporal response data into two morphologically antithetical components: one contribution captures the spatially sparse and temporally persistent features of the medium’s response, while the other provides a representation of the dominant, globally smooth component as it would be observed in a defect-free medium. Within the demixing paradigm, we explore two methods: in the first, we cast the demixing task in terms of a group Lasso regularization problem with simply structured orthonormal dictionaries; the second method makes use of a more morphologically germane dictionary whose additional structure allows for the localization of defects whose signature may be highly elusive, for example, buried in noise or masked by competing features. After the demixing is complete, an automatic visualization tool highlights the regions associated with potential anomalies and outputs their local coordinates. Since the method does not invoke any knowledge of the material properties of the medium, or of its behavior in its pristine conditions, and is solely based on data processing of current wavefield information, it is endowed with significant model agnostic and baseline-free attributes. These properties are desirable in systems where there exists limited or unreliable a priori knowledge of the constitutive model, when the physical domain is highly heterogeneous or compromised by large damage zones, or when accurate baseline simulations are unavailable. The efficacy of the proposed method is evaluated against synthetically generated data and experimental data obtained using a scanning laser Doppler vibrometer.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3