Nonlinear damage identification method of transmission tower structure based on general expression for linear and nonlinear autoregressive model and Itakura distance

Author:

Zuo Heng1,Guo Huiyong1ORCID

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing, China

Abstract

Fatigue cracks and bolt looseness are two kinds of common nonlinear damage in a transmission tower structure. However, due to the complexity of the transmission tower structure, it is difficult to identify the nonlinear damage accurately by using traditional damage identification methods. To solve this problem effectively, a time domain damage identification method based on general expression for linear and nonlinear autoregressive model (GNAR model) and Itakura distance is proposed. To describe the stochastic characteristics of time series more concisely and accurately, the optimized structure of GNAR model was selected by the stochastic pruning algorithm based on greedy strategy. And Itakura distance was used as a damage indicator for nonlinear damage identification. The nonlinear damage experiment of three-story frame model in Los Alamos laboratory was used to verify the effectiveness of the proposed method, and this method was applied to the nonlinear damage identification experiment of a transmission tower steel frame model. In the transmission tower model experiment, two kinds of nonlinear damage types are considered: component breathing cracks and joint bolt loosening. The results show that the proposed nonlinear damage identification method can easily identify the nonlinear damage of the frame model and the transmission tower model effectively. The change of floor mass barely has effects on the damage identification results. The damage probability of the damaged stories calculated by the proposed method is significantly higher than that of the undamaged stories, so that it is helpful to find the location of the nonlinear damage source efficiently. And the proposed method is a damage identification method based on sub-structure story, which can identify the transmission tower model with two nonlinear damage sources at the same time.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3