IWSHM 2017: Structural health monitoring of the loosening in a multi-bolt structure using linear and modulated nonlinear ultrasound acoustic moments approach

Author:

Fierro Gian Piero Malfense1,Meo Michele1

Affiliation:

1. Materials Research, Department of Mechanical Engineering, University of Bath, Bath, UK

Abstract

Applying highly accurate clamp loads in bolted joints during assembly and inspections is essential for estimation of the integrity of a joint and reduction of disastrous failures. Non-destructive post-assembly and in-service inspections of joint integrity are vital and significantly reduce maintenance and associated repair costs. Therefore, a bolt control technology able to provide precise direct measurement of bolt loosening state during assembly and in-service is needed. This work proposes an in situ structural health monitoring approach based on the evaluation of linear and nonlinear modulated acoustic moments for the assessment of the loosened state of bolts in a multi-bolted structure. Linear and nonlinear ultrasound methods’ detection accuracy and robustness can be highly dependent on correct frequency selection. The structural health monitoring method suggested uses material resonance and a frequency sweep methodology coupled with a cross-correlation method which identifies significant frequency pairs or higher harmonics used to determine bolt loosening. The proposed approach was tested and successfully validated on three different bolted structures showing that loosening of the structure can be identified accurately with a limited number of transducers. The solution provides a qualitative solution, which identifies degradation in the torque of a bolted structure; furthermore, the developed structural health monitoring method has the potential to become an automatic tool for monitoring the loosened state of bolts in critical complex structural components.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3