In situ characterization technique to increase robustness of imaging approaches in structural health monitoring using guided waves

Author:

Ostiguy Pierre-Claude1,Le Duff Alain23,Quaegebeur Nicolas1,Brault Louis-Philippe1,Masson Patrice1

Affiliation:

1. GAUS, Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada

2. GSII, Groupe ESEO, 10 Boulevard Jean Jeanneteau, CS 90717, 49107 Angers Cedex 2, France

3. LUNAM Université, LAUM, CNRS UMR 6613, Université du Maine, Le Mans, France

Abstract

The performance of guided wave imaging strategies used in Structural Health Monitoring relies on the accurate knowledge of mechanical properties for proper damage detection and localization. In order to increase the performance and robustness of such algorithms, it is desirable to implement autonomous approaches that can characterize the mechanical properties of the structure whatsoever the environmental and operational conditions. This article presents an innovative in situ and integrated characterization procedure based on guided waves that evaluates the thermo-mechanical properties of a structure when subjected to thermal variations prior to imaging using the same set of piezoceramic transducers used for imaging. These properties are then exploited in the damage imaging using a correlation-based algorithm (Excitelet) combined with the optimal baseline subtraction. The characterization strategy uses a genetic algorithm to identify the optimal set of mechanical properties leading to the best correlation between an analytical formulation of dispersed guided waves propagation and experimental measurements. The strategy is assessed experimentally on an aluminum plate with three sparse bonded piezoceramic transducers used for both characterization and imaging at various temperatures, representative of operational conditions of an aircraft. An artificial damage is subsequently introduced in the plate, and the effect of the accuracy of the mechanical properties estimation on imaging is assessed through the detection capability, positioning, accuracy, and correlation amplitude. The approach is then compared to three imaging methods, namely, baseline-free imaging, imaging without considering thermo-mechanical effects, and imaging using stretching methods traditionally used to compensate for temperature effects.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3