Characterization of carbon fiber reinforced polymer strengthened concrete and gap detection with a piezoelectric-based sensory technique

Author:

Giri Paritosh1ORCID,Kharkovsky Sergey23,Zhu Xinqun4ORCID,Clark Simon Martin5,Taheri Shima5,Samali Bijan2

Affiliation:

1. Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia

2. Centre for Infrastructure Engineering, School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, Australia

3. deceased

4. School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia

5. Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW, Australia

Abstract

In this article, a piezoelectric-based sensory technique is proposed for detection of the gap between surfaces of a carbon fiber reinforced polymer plate and a concrete specimen and characterization of shrinkage of early-age concrete. The proposed technique uses the propagation properties of the guided waves in the carbon fiber reinforced polymer plate excited and received by piezoelectric transducers attached to an external surface of the carbon fiber reinforced polymer–strengthened concrete specimen. Measurements are conducted with fresh and hardened early-age concrete specimens and two carbon fiber reinforced polymer plates at different gaps. A piezoelectric actuator is excited using a sine burst signal, and the generated wave is received by a sensor after propagation along the specimen. The received signal at different gap values is used to detect a gap. To quantify the gap, damage indices, including correlation coefficient, peak-to-peak amplitude of resultant signal, and root-mean-square deviation, are used. The shrinkage of concrete is detected and predicted by comparing the damage indices at different gaps with the indices at different stages of early-age concrete. The proposed technique is relatively simple method using small transducers. It is one-sided, non-destructive, and cost-effective solution for gap detection and concrete characterization.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3