Deep hybrid neural network-aided electromechanical impedance method for automated damage detection of lining concrete under freeze-thaw cycling

Author:

Zhang Chuan12ORCID,Yan Qixiang1,Liao Xiaolong1,Qiu Yunhui1,Zhang Yifeng1,Wang Ping2

Affiliation:

1. State Key Laboratory of Intelligent Geotechnics and Tunnelling, Southwest Jiaotong University, Chengdu, China

2. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, China

Abstract

Cold regional tunnels extensively suffer from severe damage in concrete linings under cyclic freeze-thaw environment. Therefore, accurate detection and evaluation of cyclic freeze-thaw damage within lining concrete is of great significance to help grasp structural health state and guarantee timely maintenance. This study pioneered the application of electromechanical impedance (EMI) method to monitor the freeze-thaw damage in bended concrete beams. The mass loss and flexural strength degradation of concrete beams under two different bending loads were thoroughly assessed to quantify the evolution of cyclic freeze-thaw damage. Moreover, the conductance signatures driven by d31 and d33 modes were analyzed, respectively. It was found that the variation in the d31 mode-dominated signal well agreed with the progressive damage characterized by the flexural strength degradation. The key innovation of this study is that a deep hybrid neural network DenseNet–GRU was constructed and well trained to predict the cyclic freeze-thaw damage from augmented EMI data. The results indicated that the proposed model achieved excellent performance with determination coefficients exceeding 0.997 for both bending scenarios. Additionally, DenseNet–GRU outperformed conventional baseline machine or deep learning models in prediction accuracy and noise-resistance capacity. Notably, it demonstrated good adaptability when trained with limited data samples. In summary, the proposed methodology enabled automated detection and accurate forecasting of the cyclic freeze-thaw damage in lining concrete without hand-crafted features.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3