Fatigue performance investigation for hangers of suspension bridges based on site-specific vehicle loads

Author:

Deng Yang123ORCID,Li Aiqun123,Feng Dongming4

Affiliation:

1. Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing, China

2. Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, China

3. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

4. Weidlinger Transportation Practice, Thornton Tomasetti, Inc., New York, NY, USA

Abstract

Hangers or suspenders of a suspension bridge are the primary load-carrying members and are vital to the structural integrity and service life of the bridge. Site-specific vehicle loads monitored by the weigh-in-motion system can assist to obtain the operational cyclic stresses of hangers. Differing from most existing studies, herein, a framework for fatigue performance investigation for hangers of suspension bridges is proposed utilizing the full information of the weigh-in-motion data. This framework includes four steps: (1) generate influence surfaces for hangers, (2) reconstruct vehicular loading flows based on the weigh-in-motion data, (3) calculate time histories of hanger tension forces, and (4) evaluate fatigue damages and predict fatigue lives. Critical issues, such as the loading configuration of trucks, the threshold of the gross vehicle weight, and the time step for stress calculation, have been studied and discussed in detail. Based on 8-month weigh-in-motion data of a prototype suspension bridge, it is shown that the fatigue damage of hangers can be evaluated day by day, and subsequently the fatigue lives can be predicted. The correlation between the fatigue damages and vehicular loads is also investigated in this study.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3