Affiliation:
1. Structural Integrity and Composites Group, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
2. Laboratory of Applied Mechanics and Vibrations, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
Abstract
Conducting damage diagnostics on stiffened panels is commonly performed using a single SHM technique. However, each SHM technique has both its strengths and limitations. Rather than straining the expansion of single SHM techniques going beyond their intrinsic capacities, these strengths and limitations should instead be considered in their application. In this work, we propose a novel fusion-based methodology between data from two SHM techniques in order to surpass the capabilities of a single SHM technique. The aim is to show that by considering data fusion, a synergy can be obtained, resulting in a comprehensive damage assessment, not possible using a single SHM technique. For this purpose, three single-stiffener carbon–epoxy panels were subjected to fatigue compression after impact tests. Two SHM techniques monitored damage growth under the applied fatigue loads: acoustic emission and distributed fiber optic strain sensing. Four acoustic emission sensors were placed on each panel, thereby allowing for damage detection, localization, type identification (delamination), and severity assessment. The optical fibers were adhered to the stiffener feet’ surface, and its strain measurements were used for damage detection, disbond localization, damage type identification (stiffness degradation and disbond growth), and severity assessment. Different fusion techniques are presented in order to integrate the acoustic emission and strain data. For damage detection and severity assessment, a hybrid health indicator is obtained by feature-level fusion while a complementary and cooperative fusion of the diagnostic results is developed for damage localization and type identification. We show that damage growth can be monitored up until final failure, thereby performing a simultaneous damage assessment on all four SHM levels. In this manner, we demonstrate that by proposing a fusion-based approach toward SHM of composite structures, the intrinsic capacity of each SHM technique can be utilized, leading to synergistic effects for damage diagnostics.
Funder
H2020 Societal Challenges
Subject
Mechanical Engineering,Biophysics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献