CrackDenseLinkNet: a deep convolutional neural network for semantic segmentation of cracks on concrete surface images

Author:

Manjunatha Preetham1ORCID,Masri Sami F1,Nakano Aiichiro2,Wellford Landon Carter1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA

2. Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Physics and Astronomy, and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA

Abstract

Cracks are the defects formed by cyclic loading, fatigue, shrinkage, creep, and so on. In addition, they represent the deterioration of the structures over some time. Therefore, it is essential to detect and classify them according to the condition grade at the early stages to prevent the collapse of structures. Deep learning-based semantic segmentation convolutional neural network (CNN) has millions of learnable parameters. However, depending on the complexity of the CNN, it takes hours to days to train the network fully. In this study, an encoder network DenseNet and modified LinkNet with five upsampling blocks were used as a decoder network. The proposed network is referred to as the “CrackDenseLinkNet” in this work. CrackDenseLinkNet has 19.15 million trainable parameters, although the input image size is 512 × 512 and has a deeper encoder. CrackDenseLinkNet and four other state-of-the-art (SOTA) methods were evaluated on three public and one private datasets. The proposed CNN, CrackDenseLinkNet, outperformed the best SOTA method, CrackSegNet, by 2.2% of F1-score on average across the four datasets. Lastly, a crack profile analysis demonstrated that the CrackDenseLinkNet has lesser variance in relative errors for the crack width, length, and area categories against the ground-truth data. The code and datasets can be downloaded at https://github.com/preethamam/CrackDenseLinkNet-DeepLearning-CrackSegmentation .

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fine‐grained crack segmentation for high‐resolution images via a multiscale cascaded network;Computer-Aided Civil and Infrastructure Engineering;2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3