Anisotropy influence on guided wave scattering for composite structure monitoring

Author:

Hervin Flora1ORCID,Fromme Paul1ORCID

Affiliation:

1. Department of Mechanical Engineering, University College London, London, UK

Abstract

Composite structures are widely used for aerospace applications but are prone to barely visible impact damage from low velocity impacts. Guided wave measurements using sparse arrays of distributed sensors provide an important structural health monitoring (SHM) tool for detecting and localizing impact damage in composites. However, the anisotropy of composites needs to be considered as it can affect guided wave propagation and scattering, impacting imaging performance. Improved defect characterization can be achieved by considering the scattering characteristics for the signal processing. Scattering around two different damage types for multiple incident wave directions in a quasi-isotropic carbon fiber reinforced polymer (CFRP) panel were investigated. Full 3D Finite Element (FE) simulations were compared to the measured scattered guided wave field at an artificial insert delamination. Permanent magnets mounted on an undamaged region of the plate were used as scattering targets and both numerical and experimental scattering patterns were compared to the delamination results. Strong directional dependency was observed for both damage types, with energy focusing along the fiber directions of the outer ply layers. For the delamination, mostly forward scattering is observed for all incident wave directions, whereas the magnet blocked forward wave transmission and scattered wave energy in all directions. 2D scattering matrices were calculated, demonstrating distinct scattering behavior for each damage type. Implications of anisotropy and angular scattering on SHM guided wave sparse array imaging are discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3