Deep principal component analysis: An enhanced approach for structural damage identification

Author:

Silva Moisés1ORCID,Santos Adam12,Santos Reginaldo1,Figueiredo Eloi34,Sales Claudomiro1,Costa João CWA1

Affiliation:

1. Applied Electromagnetism Laboratory, Universidade Federal do Pará, Belém, Brazil

2. Faculty of Computing and Electrical Engineering, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil

3. Faculty of Engineering, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal

4. CONSTRUCT—Institute of R&D in Structures and Construction, Porto, Portugal

Abstract

The structural health monitoring relies on the continuous observation of a dynamic system over time to identify its actual condition, detect abnormal behaviors, and predict future states. The regular changes in environmental factors have been reported as one of the main challenges for the application of structural health monitoring systems. These influences in the structural responses are in general nonlinear, affecting the damage-sensitive features in the most varied forms. The usual process to remove these normal changes is referred to as data normalization. In that regard, principal component analysis is probably the most studied algorithm in structural health monitoring, having numerous versions to learn strong nonlinear normal changes. However, in most cases, not all variability is properly accounted for via the existing nonlinear principal component analysis approaches, resulting in poor damage detection and quantification performances. In this article, a new paradigm based on deep principal component analysis, rooted in the deep learning field, is presented to overcome these limitations. This approach extracts the most salient underlying feature distributions by stacking multiple feedforward neural networks trained to learn an identity mapping of the input variables, where the network inputs are reproduced into the outputs. Similar to the traditional nonlinear principal component analysis–based approach, our approach identifies a nonlinear output-only model of an undamaged structure by comprising modal features into an internal bottleneck layer, which implicitly represents the independent environmental factors. The proposed technique is validated through the application on a progressively damaged prestressed concrete bridge and a three-span suspension bridge. The experimental results demonstrate that capturing the most slight nonlinear variations in the data can lead to improved data normalization and, consequently, better damage detection and quantification performances.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3