Deep learning-based fatigue damage segmentation of wind turbine blades under complex dynamic thermal backgrounds

Author:

Sheiati Shohreh1,Chen Xiao1ORCID

Affiliation:

1. Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark

Abstract

Passive thermography is an efficient method to inspect fatigue damage of large-scale structures such as wind turbine blades under cyclic loads. Quantitative damage evaluation often requires the damage region to be segmented from the thermal image, which challenges conventional image process techniques, especially when the structure is moving, and the thermal background is changing. This study proposes a model based on deep learning and thermography to automatically segment complex dynamic background of images taken from a wind turbine blade during cyclic loading and subsequently segment the fatigue blade damages. An automated background segmentation algorithm is developed to isolate the blade from the background using six state-of-the-art deep learning models. The most accurate model is then chosen and improved for the second step of damage segmentation, achieving a level of accuracy comparable to that of human observation, even with fewer images in the training process. The proposed background and damage segmentation methods have recall of 99% and 82%, respectively, indicating that the proposed approach is accurate, efficient, and robust.

Funder

Energiteknologisk udviklings- og demonstrationsprogram

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3