Structural damage detection based on variational Bayesian inference and delayed rejection adaptive Metropolis algorithm

Author:

Wang Xiaoyou1,Hou Rongrong1,Xia Yong1ORCID,Zhou Xiaoqing2

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

2. College of Civil Engineering, Shenzhen University, Shenzhen, China

Abstract

Existing studies on sparse Bayesian learning for structural damage detection usually assume that the posterior probability density functions follow standard distributions which facilitate to circumvent the intractable integration problem of the evidence by means of numerical sampling or analytical derivation. Moreover, the uncertainties of each mode are usually quantified as a common parameter to simplify the calculation. These assumptions may not be realistic in practice. This study proposes a sparse Bayesian method for structural damage detection suitable for standard and nonstandard probability distributions. The uncertainty corresponding to each mode is assumed as different. Variational Bayesian inference is developed and the posterior probability density functions of each unknown are individually derived. The parameters are found to follow the gamma distribution, whereas the distribution of the damage index cannot be directly obtained because of the nonlinear relationship in its posterior probability density function. The delayed rejection adaptive Metropolis algorithm is then adopted to generate numerical samples of the damage index. The coupled damage index and parameters in the variational Bayesian inference are successively calculated via an iterative process. A laboratory-tested frame is utilised to verify the effectiveness of the proposed method. The results indicate that the sparse damage can be accurately detected. The proposed method has the advantage of high accuracy and broad applicability.

Funder

PolyU Research Grant

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3