An innovative machine learning based framework for water distribution network leakage detection and localization

Author:

Fan Xudong1,Yu Xiong (Bill)1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH, USA

Abstract

Leakages in the underground water distribution networks (WDNs) waste over 1 billion gallon of water annually in the US and cause significant socio-economic loss to our communities. However, detecting and localization leakage in a WDN remains a challenging technical problem despite of significant progresses in this domain. The progresses in machine learning (ML) provides new ways to identify the leakage by data-driven methods. However, in-service WDNs are short of labeled data under leaking conditions, which makes it infeasible to use common ML models. This study proposed a novel machine learning (ML)-based framework for WDN leak detection and localization. This new framework, named clustering-then-localization semi-supervised learning (CtL-SSL), uses the topological relationship of WDN and its leakage characteristics for WDN partition and sensors placement, and subsequently utilizes the monitoring data for leakage detection and leakage localization. The CtL-SSL framework is applied to two testbed WDNs and achieves 95% leakage detection accuracy and around 83% final leakage localization accuracy by use of unbalanced data with less than 10% leaking data. The developed CtL-SSL framework advances the leak detection strategy by alleviating the data requirements, guiding optimal sensor placement, and locating leakage via WDN leakage zone partition. It features excellent scalability, extensibility, and upgradeability for applications to various types of WDNs. It will provide valuable a tool in sustainable management of the WDNs.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3