Fabrication, characterization, and repair of nanocarbon-loaded aircraft paint-based sensors for real-world SHM: studies at the laboratory scale

Author:

Cuellar Carlos1,Watson Kaitlyn1,Smela Elisabeth1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, College Park, MD, USA

Abstract

There has been considerable interest in piezoresistive nanocarbon-loaded polymer films for structural health monitoring, including damage detection and strain monitoring. While good performance has been demonstrated, issues related to practical implementation have received less attention. Here we present sensors made from exfoliated graphite nanoplatelets (xGnP) incorporated into a commercial paint that is applied to Sikorsky aircraft. A formulation and a fabrication method are developed that deliver high piezoresistive strain sensitivity alongside mechanical integrity. At approximately 7 wt% xGnP, the gauge factor in tension is in the range of 30–55, and the effectiveness of the sensors for damage monitoring is demonstrated by the detection of perforations. To obtain a paintable solution, key considerations in choosing the solvent employed for introducing the nanocarbon are compatibility and the ability to keep the nanocarbon suspended, which is achieved using ethyl acetate. The ability to form sensors in situ on aircraft structures requires an uncomplicated method of making robust electrical connections, which is demonstrated here using embedded copper mesh. The strong, often nonlinear, environmental sensitivity of polymer-nanocarbon materials must also be considered in applications; here, increasing temperature and humidity both raise sensor resistance. This work shows that a second, unstrained reference sensor would work well for automatic compensation. Lastly, a method for effecting a repair that employs standard processes and maintains the high gauge factor is demonstrated. With these advances, the paint-xGnP sensors are ready for in-the-field testing on aircraft.

Funder

Lockheed Martin

Cooper Gilbert

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3