Damage identification based on convolutional neural network and recurrence graph for beam bridge

Author:

He Hao-xiang1ORCID,Zheng Jia-cheng1,Liao Li-can1,Chen Yan-jiang1

Affiliation:

1. Beijing Key Laboratory of Earthquake Engineering and Structure Retrofit, Beijing University of Technology, Beijing, China

Abstract

Traditional statistical pattern identification methods, such as artificial neural network and support vector machine, have limited ability to identify minor damage of bridges. Deep learning can mine the inherent law and representation level of sample data. As a typical algorithm of deep learning, convolutional neural network is a feedforward neural network with deep structure and convolution calculation, and its ability of image identification is very outstanding. The recurrence graph of structural response can reveal the internal structure, similarity, and damage information. The original structure response signal involves the coupling vibration of vehicle and bridge is filtered and reconstructed by wavelet packet, and then the recurrence graph of different damage cases is obtained, which is used as the input image of convolutional neural network as a new type of damage feature; thus, a damage identification method based on convolutional neural network and recurrence graph is established. The results of numerical simulation and model experiment show that the recurrence graph contains more damage information; compared with the traditional statistical pattern identification methods, convolutional neural network can achieve more accurate feature extraction and identification through intelligent learning layer by layer, so as to realize more accurate identification of damage location and damage degree.

Funder

national key research and development program of china stem cell and translational research

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3