Use of an elasto-plastic model and strain measurements of embedded fibre Bragg grating sensors to detect Mode I delamination crack propagation in woven cloth (0/90) composite materials

Author:

Kakei Ayad Arab12,Islam Mainul1,Leng Jinsong34,Epaarachchi Jayantha A1

Affiliation:

1. Centre for Future Materials, University of Southern Queensland, Toowoomba, QLD, Australia

2. College of Engineering, University of Kirkuk, Kirkuk, Iraq

3. School of Mechanical and Electrical Engineering and Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba, QLD, Australia

4. Centre for Smart Materials and Structures, School of Astronautics, Harbin Institute of Technology, Harbin, China

Abstract

Mode I fracture analysis being employed to study delamination damage in fibre-reinforced composite structures under in-plane and out-of-plane load applications. However, due to the significantly low yield strength of the matrix material and the infinitesimal thickness of the interface matrix layer, the actual delamination process can be assumed as a partially plastic process (elasto-plastic). A simple elasto-plastic model based on the strain field in the vicinity of the crack front was developed for Mode I crack propagation. In this study, a double cantilever beam experiment has been performed to study the proposed process using a 0/90-glass woven cloth sample. A fibre Bragg grating sensor has embedded closer to the delamination to measure the strain at the vicinity of the crack front. Strain energy release rate was calculated according to ASTM D5528. The model predictions were comparable with the calculated values according to ASTM D5528. Subsequently, a finite element analysis on Abaqus was performed using ‘Cohesive Elements’ to study the proposed elasto-plastic behaviour. The finite element analysis results have shown a very good correlation with double cantilever beam experimental results, and therefore, it can be concluded that Mode I delamination process of an fibre-reinforced polymer composite can be monitored successfully using an integral approach of fibre Bragg grating sensors measurements and the prediction of a newly proposed elasto-plastic model for Mode I delamination process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3