Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure

Author:

Zhou Yun-Lai1,Maia Nuno M.M.2,Sampaio Rui P.C.23,Wahab Magd Abdel456

Affiliation:

1. Department of Civil & Environmental Engineering, National University of Singapore, Singapore

2. LAETA, IDMEC, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

3. CINAV, Escola Naval, Base Naval de Lisboa, Almada, Portugal

4. Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

5. Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

6. Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, Zwijnaarde, Belgium

Abstract

Maintenance and repairing in actual engineering for long-term used structures, such as pipelines and bridges, make structural damage detection indispensable, as an unanticipated damage may give rise to a disaster, leading to huge economic loss. A new approach for detecting structural damage using transmissibility together with hierarchical clustering and similarity analysis is proposed in this study. Transmissibility is derived from the structural dynamic responses characterizing the structural state. First, for damage detection analysis, hierarchical clustering analysis is adopted to discriminate the damaged scenarios from an unsupervised perspective, taking transmissibility as feature for discriminating damaged patterns from undamaged ones. This is unlike directly predicting the structural damage from the indicators manifestation, as sometimes this can be vague due to the small difference between damaged scenarios and the intact baseline. For comparison reasons, cosine similarity measure and distance measure are also adopted to draw out sensitive indicators, and correspondingly, these indicators will manifest in recognizing damaged patterns from the intact baseline. Finally, for verification purposes, simulated results on a 10-floor structure and experimental tests on a free-free beam are undertaken to check the suitability of the raised approach. The results of both studies are indicative of a good performance in detecting damage that might suggest potential application in actual engineering real life.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3