A Feature Extraction & Selection Benchmark for Structural Health Monitoring

Author:

Buckley Tadhg1,Ghosh Bidisha2,Pakrashi Vikram1ORCID

Affiliation:

1. UCD Centre for Mechanics, Dynamical Systems and Risk Laboratory, School of Mechanical and Materials Engineering, Ireland and Science Foundation Ireland MaREI Centre, University College Dublin, Dublin, Ireland

2. QUANT Group, School of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin, Ireland

Abstract

There are a large number of time domain, frequency domain and time-frequency signal processing methods available for univariate feature extraction. However, there is no consensus in SHM on which feature, or feature sets, are best suited for the identification, localisation and prognosis of damage. This paper attempts to address this problem by providing a comprehensive benchmark of feature selection & reduction methods applied to an extensive set of univariate features. These univariate features are extracted using multiple statistical, temporal and spectral methods from the benchmark S101 and Z24 bridge datasets. These datasets contain labelled accelerometer recordings from full scale bridges as they are progressively subjected to multiple damage scenarios. To identify the minimal set of features that best distinguishes between the multiple damage states, a supervised machine learning approach is used in combination with multiple feature selection methods. The ability of these reduced feature sets to distinguish between damage states is benchmarked using the prediction performance of the classification models, with the training and test sets obtained through stratified k-fold cross validation. The results obtained show that reduced sets of univariate features, extracted from a single accelerometer sensor, are capable of accurately distinguishing between multiple classes of healthy and damaged states. This work provides a benchmark for SHM practitioners and researchers alike for the choice, comparison and validation of feature extraction and feature selection methods across a wide range of systems.

Funder

Interreg

Science Foundation Ireland

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3